
Prof. Edson Pedro Ferlin

1

Prof. Edson Pedro Ferlin

Programação em C

1 Ponteiros

PonteirosPonteiros

Prof. Edson Pedro FerlinProf. Edson Pedro Ferlin

Prof. Edson Pedro Ferlin

Programação em C

2 Ponteiros

Definições

• Definição: é uma variável que contém um endereço de memória

• Esse endereço é a localização de uma outra variável de memória.

Prof. Edson Pedro Ferlin

2

Prof. Edson Pedro Ferlin

Programação em C

3 Ponteiros

Variáveis Ponteiros

• Forma geral para a declaração:

Tipo *nome_var;

• Exemplos:

char *p;

int *temp;

Obs: o tipo base do ponteiro
define para que tipos de
variáveis o ponteiro pode
apontar.

Prof. Edson Pedro Ferlin

Programação em C

4 Ponteiros

Operadores de Ponteiros

• Dois operadores especiais:

* - valor da variável;

& - endereço da variável.

• São unários, requerem apenas um operando.

• Exemplos:

end_cont = &cont; /* recebe o endereço de cont */

valor = *end_cont; /* recebe o valor no endereço */

Obs: Assegurar que as
variáveis com ponteiros
sempre apontem para o tipo
correto de dado.

Prof. Edson Pedro Ferlin

3

Prof. Edson Pedro Ferlin

Programação em C

5 Ponteiros

Exemplo

main()

{ float x=10.1, y;

int *p;

p=&x;

y=*p;

printf (“%f”, y);

}

Obs: Como declaramos que p é um ponteiro de
inteiros, o compilador transferirá apenas dois
bytes de informação para y, e não os quatro
bytes que normalmente formam um número
com ponto flutuante.

Prof. Edson Pedro Ferlin

Programação em C

6 Ponteiros

Expressões com Ponteiros
Atribuição

main()

{ int x;

int *p1, *p2;

p1=&x;

p2=p1;

printf (“%p”, p2); /* imprime o valor HEX do endereço de x */

}

Pode-se usar um ponteiro no lado
direito dos comandos de atribuição
para atribuir seu valor a um outro
ponteiro.

Prof. Edson Pedro Ferlin

4

Prof. Edson Pedro Ferlin

Programação em C

7 Ponteiros

Expressões com Ponteiros
Aritmética (1)

• Apenas duas operações aritméticas são possíveis:
• + (soma)

• - (subtração)

� Exemplo:
• Supondo p1 um ponteiro para um inteiro com valor atual de 2000.

p1++; /* p1 = 2002 */

• A cada incremento de p1, ele apontará para o próximo inteiro. O mesmo vale para os decrementos.
P1--; /* p1 = 1998 */

• Cada vez que o computador incrementa ou decrementa um ponteiro, ele aponta para a
localização de memória do próximo elemento de seu tipo base.

Prof. Edson Pedro Ferlin

Programação em C

8 Ponteiros

Expressões com Ponteiros
Aritmética (2)

• Pode-se também adicionar ou subtrair de e para
ponteiros:

• p1=p1+9;

• Nesse caso, p1 apontará para o nono elemento do tipo base de
p1, além daquele para o qual estiver apontando no momento;

� Obs: pode-se somente efetuar a soma e subtração
com ponteiros.
• char *ch=3000;

• Int *i=3000;

Prof. Edson Pedro Ferlin

5

Prof. Edson Pedro Ferlin

Programação em C

9 Ponteiros

Expressões com Ponteiros
Comparações de Ponteiros

• É possível comparar dois ponteiros em uma expressão de relação.

� Exemplo: (Sendo p e q dois ponteiros)

if (p<q) printf (“p aponta para posicao inferior de memória do que q\n”);

• Em geral utiliza-se comparações de ponteiros quando dois ou mais ponteiros estão
apontando para um objeto comum.

Prof. Edson Pedro Ferlin

Programação em C

10 Ponteiros

Ponteiros e Matrizes
Parte 1 - Geral

• Existe um relacionamento muito próximo entre ponteiros e as matrizes.

• Considerando o exemplo:
char str[80], *p;

p = str;

• Ajusta p para o endereço do primeiro elemento da matriz str.

• Obs:
• No C o nome de uma matriz sem um índice é o endereço do início da matriz;

• O nome da matriz é um ponteiro para aquela matriz.

Prof. Edson Pedro Ferlin

6

Prof. Edson Pedro Ferlin

Programação em C

11 Ponteiros

Ponteiros e Matrizes
Parte 2 – Métodos de Acesso

• Exemplo: para acessar o nono elemento em str:
str[8] ou *(p1+8)

• Obs: Lembrando que no C, todas as matrizes usam zero como índice do primeiro elemento.

• A linguagem C, permite, essencialmente, dois métodos de acesso aos elementos de
uma matriz:

• a indexação da matriz e

• a aritmética de ponteiros

• Isto é importante porque a aritmética dos ponteiros pode ser mais rápida que a
indexação de matrizes.

Prof. Edson Pedro Ferlin

Programação em C

12 Ponteiros

Ponteiros e Matrizes
Parte 3 – Exemplo com Matrizes

main () /* Versao com Matrizes */

{

char str[80];

int i;

printf (“Digite uma string em letras maiusculas: “);

gets(str);

printf (“Eis aqui a string em letras minusculas: “);

for (i=0; str[i]; i++) printf (“%c”, tolower (str[i]));

}

Prof. Edson Pedro Ferlin

7

Prof. Edson Pedro Ferlin

Programação em C

13 Ponteiros

Ponteiros e Matrizes
Parte 4 – Exemplo com Ponteiros

main () /* Versao com Ponteiros*/

{

char str[80], *p;

printf (“Digite uma string em letras maiusculas: “);

gets(str);

printf (“Eis aqui a string em letras minusculas: “);

p = str; /* obtem o endereco de str */

while (*p) printf (“%c”, tolower (*p++));

}

Prof. Edson Pedro Ferlin

Programação em C

14 Ponteiros

Ponteiros e Matrizes
Parte 5 – Observações

• A razão para a versão com matrizes ser mais lenta que a versão com ponteiros é
que o “C” leva mais tempo para indexar uma matriz que para usar o operador
(*);

• Para acessar uma matriz na ordem ascendente ou descendente, os ponteiros são
mais rápidos e fáceis de usar;

• Para acessar de maneira aleatória, a indexação será melhor, porque é geralmente
tão rápida quanto a avaliação de uma expressão complexa com ponteiros e
porque será mais fácil de programar e entender;

• Na indexação de matrizes, estará sendo deixado o compilador fazer o trabalho
por nós.

Prof. Edson Pedro Ferlin

8

Prof. Edson Pedro Ferlin

Programação em C

15 Ponteiros

Indexando um Ponteiro

• Pode-se indexar um ponteiro como se ele fosse uma matriz.

main () /* indexando um ponteiro*/

{

int i[5]={1,2,3,4,5};

int *p, t;

p=i;

for (t=0;t<5;t++) printf (“%d”, p[t]);

}

• O comando p[t] é idêntico a *(p+t).

Prof. Edson Pedro Ferlin

Programação em C

16 Ponteiros

Matrizes sem Índice
Parte 1 - Exemplo

strcompara (char *s1, char *s2) /* compara duas strings */

{

while (*s1) /* sera verdadeiro ate que chegue ao fim da string */

if (*s1 - *s2)

return (*s1-*s2); /* se não igual entao return a diferenca */

else {

s1++;

s2++;

}

return (‘\0’); /* se for igual */

}

O nome de uma matriz sem

índice é um ponteiro ao

primeiro elemento daquela

matriz;

Quando usamos funções de

strings, o computador

apenas passará para as

funções um ponteiro para a

strings e não o valor real da

string.

Prof. Edson Pedro Ferlin

9

Prof. Edson Pedro Ferlin

Programação em C

17 Ponteiros

Matrizes sem Índice
Parte 2 - argumento

• O mesmo vale se passarmos uma constante de string como argumento.

If (!strcompara (“Alo”, str)) printf(“A str contem Alo”);

• De forma análoga, quando usamos uma constante de string o computador passará apenas um
ponteiro para aquela constante.

Prof. Edson Pedro Ferlin

Programação em C

18 Ponteiros

Matrizes sem Índice
Parte 3 - Generalizando

main()

{

char *s;

s=“funcionando !!!”;

printf (s);

}

Quando usamos constante de string

em qualquer tipo de expressão, o

computador trata a constante como

se ela fosse um ponteiro para o

primeiro caracter da string.

Prof. Edson Pedro Ferlin

10

Prof. Edson Pedro Ferlin

Programação em C

19 Ponteiros

Matrizes de Ponteiros
Parte 1 -

• Podemos fazer matrizes de ponteiros da mesma forma como faz-se matrizes de qualquer outro
tipo de dado;

• A declaração de uma matriz de ponteiros inteiros de tamanho 10 é:
int *x[10];

• Atribuindo o endereço de uma variável inteira chamada var ao terceiro elemento da matriz de
ponteiros:

x[2]=&var;

• Para obtermos o valor de var:
valor=*x[2];

Prof. Edson Pedro Ferlin

Programação em C

20 Ponteiros

Ponteiros para Ponteiros
Parte 1 – Visão geral

• Uma matriz de ponteiros é a mesma coisa que ponteiros para ponteiros;

• Um ponteiro para um ponteiro é uma forma de indireção múltipla, ou uma cadeia de
ponteiros;

Prof. Edson Pedro Ferlin

11

Prof. Edson Pedro Ferlin

Programação em C

21 Ponteiros

Ponteiros para Ponteiros
Parte 2 - Exemplo

• Declaramos uma variável que é um ponteiro
para ponteiro, bastando colocar um (*) adicional
na frente do nome da variável:

float **teste;

• Obs: Teste não é um ponteiro para um número
de ponto flutuante (float), mas sim um ponteiro
para um ponteiro float.

main()

{

int x, *p, **q;

x=10;

p=&x; /* endereco x */

q=&p; /* endereco p */

printf(“%d”, **q); /* Imprime x */

}

Prof. Edson Pedro Ferlin

Programação em C

22 Ponteiros

Inicialização de Ponteiros

• Depois de declararmos um ponteiro, ele conterá um valor desconhecido;

• Se tentarmos usar um ponteiro antes de atribuir-lhe um valor, provavelmente danificaremos não
apenas o programa, mas também o sistema operacional;

• Uma forma de inicializarmos é:
char *p=“Alo mundo”;

Prof. Edson Pedro Ferlin

12

Prof. Edson Pedro Ferlin

Programação em C

23 Ponteiros

Problemas com Ponteiros

• Um erro em ponteiro é difícil de ser encontrado porque o ponteiro em si não é o problema; o
problema é que cada vez que executamos uma operação que usa o ponteiro, estaremos lendo ou
gravando para um pedaço desconhecido da memória;

• Problemas:
• Obter lixo;

• Gravar sobre outras partes de seu código ou dados;

• Cuidados:
• Saiba sempre para onde o ponteiro está apontando;

• Nunca use um ponteiro que não foi inicializado.

Prof. Edson Pedro Ferlin

Programação em C

24 Ponteiros

Alocação Dinâmica

• Depende dos ponteiros para sua operação;

• Dois métodos por meio dos quais um programa pode
armazenar informações na memória principal:

• Variáveis Locais e Globais;

• Utilizando-se das funções de Alocação Dinâmica {malloc() e free()}

• Neste caso o programa aloca armazenamento para
informações da área de memória livre chamada HEAP
(ou área de alocação dinâmica).

Prof. Edson Pedro Ferlin

13

Prof. Edson Pedro Ferlin

Programação em C

25 Ponteiros

Alocação Dinâmica
Funções malloc() e free()

• Trabalham juntas usando a região de memória livre para estabelecer e manter uma lista da
memória disponível;

• malloc ()  solicitar memória;

• free ()  liberar memória;

Prof. Edson Pedro Ferlin

Programação em C

26 Ponteiros

Alocação Dinâmica
Exemplo#include "alloc.h"

#include "stdio.h"

main ()

{

int *p, t;

p=(int *) malloc (40*sizeof(int));

if (!p) printf (“Memoria Insuficiente \n”);

else {

for (t=0;t<40;t++) *(p+t)=t;

for (t=0;t<40;t++) printf (“%d”, *(p+t));

free (p);

}

}

Prof. Edson Pedro Ferlin

14

Prof. Edson Pedro Ferlin

Programação em C

27 Ponteiros

ContatoContato

eferlin@live.com

(BLOG) professorferlin.blogspot.com

(SITE) professorferlin.webnode.com.br

(YOUTUBE) ProfEdsonPedroFerlin

