
Prof. Edson Pedro Ferlin

1

Prof. Edson Pedro Ferlin

Programação em C

1 Funções

FunçõesFunções

Prof. Edson Pedro FerlinProf. Edson Pedro Ferlin

Prof. Edson Pedro Ferlin

Programação em C

2 Funções

Definições

• Definição: São blocos de construção em que ocorrem todas as atividades dos programas;

especificador_tipo nome_função (lista_parâmetros)

declarações de parâmetros

{

corpo do programa

}

• O especificador de tipo especifica o tipo do valor que a função devolverá através do uso de return.

• O valor pode ser qualquer tipo válido;

Prof. Edson Pedro Ferlin

2

Prof. Edson Pedro Ferlin

Programação em C

3 Funções

Retorno de uma Função
Parte 1 - Executa o último comando

Impr_inverso(char *s)

{

int t;

for (t=strlen(s)-1;t>=0;t--) printf (“%c”, s[t]);

}

Prof. Edson Pedro Ferlin

Programação em C

4 Funções

Retorno de uma Função
Parte 2 - Comando Return

power (int base, int exp)

{

int i;

if (exp<0) return (0); /* retorna se exp negativa */

i = 1;

for (;exp;exp--) i=base*i;

printf (“A resposta eh: %d”, i);

}

Prof. Edson Pedro Ferlin

3

Prof. Edson Pedro Ferlin

Programação em C

5 Funções

Valores de Retorno

• Todas as funções, exceto aquelas que
você declara como sendo do tipo void,
devolvem um valor;

• Utiliza-se a palavra reservada (return).

main()

{

int x,y,z;

x=10;

y=20;

z = mult(x,y);

printf (“%d”, mult (x,y));

mult (x,y);

}

mult (int a, int b)

{

return (a*b);

}

Prof. Edson Pedro Ferlin

Programação em C

6 Funções

Escopo das Funções
Parte 1 - Visão Geral

• Governam se um trecho de código conhece ou não ou tem acesso ou não a um outro trecho de
código ou dados;

• Três tipos:

• Variáveis locais;

• Variáveis globais;

• Parâmetros formais.

Prof. Edson Pedro Ferlin

4

Prof. Edson Pedro Ferlin

Programação em C

7 Funções

Escopo das Funções
Parte 2 - Variáveis Locais

• Variáveis que são declaradas dentro de uma função;

• Podem ser referenciadas apenas pelos comandos que estão dentro do bloco no qual estão
declaradas;

• Existem apenas durante a execução do bloco de código no qual estão declaradas; i.e., uma
variável local é criadas quando se entra em seu bloco e destruída na saída;

• Vantagem: O armazenamento para as variáveis locais está na pilha (região dinâmica da
memória);

Prof. Edson Pedro Ferlin

Programação em C

8 Funções

Escopo das Funções
Parte 3 - Parâmetros Formais

• Variáveis que aceitarão os valores dos argumentos;

• Se comportam como qualquer outra variável local dentro da função;

Prof. Edson Pedro Ferlin

5

Prof. Edson Pedro Ferlin

Programação em C

9 Funções

Escopo das Funções
Parte 4 - Variáveis Globais

• São conhecidas por todo o programa e podem ser usadas por qualquer parte o código;

• Retêm seus valores durante toda a execução do programa;

• O armazenamento das variáveis globais fica em uma região fixa da memória;

• Evitar usar variáveis globais desnecessariamente:
• Ocupam memória durante toda a execução do programa;

• Menor generalização;

• Podem ocorrer erros.

Prof. Edson Pedro Ferlin

Programação em C

10 Funções

Escopo das Funções
Parte 5 – Exemplo de Programa

int sum; /* Variavel Global */

main ()

{
int count; /* Variavel Local */
sum = 0;
for (count = 0; count < 10; count ++)
{

total (count);
display ();

}

}

total (int x) /* Parametro formal */

{

sum = x + sum;

}

display ()

{

int count;

for (count = 0; count < 10; count++)

{

printf (“.”);

}

printf (“A soma corrente eh %d\n”,sum);

}

Prof. Edson Pedro Ferlin

6

Prof. Edson Pedro Ferlin

Programação em C

11 Funções

Argumentos das Funções
Parte 1 – Visão Geral

• Parâmetros formais das funções tende ser do mesmo tipo dos argumentos usados para chamá-
las;

• Duas chamadas:

• Por Valor  copia o valor de um argumento para o parâmetros formal da função;

• Por Referência  copia o endereço de um argumento para o parâmetro.

• O C usa o método de chamada por Valor para passar argumentos.

Prof. Edson Pedro Ferlin

Programação em C

12 Funções

Argumentos das Funções
Parte 2 – Exemplos

Por Valor

main ()

{

int t=10; /* Variavel Local */

printf (“%d %d”, pot2(t), t);

}

pot2 (int x) /* Parametro formal */

{

x=x*x;

return (x);

}

Por Referência

main ()

{

int x=10,y=20; /* Variavel Local */

swap (&x,&y);

}

swap (int *x, int *y) /* Parametro formal */

{

int temo;

temp = *x;

*x = *y;

*y = temp;

}

Prof. Edson Pedro Ferlin

7

Prof. Edson Pedro Ferlin

Programação em C

13 Funções

Argumentos argc e argv
Parte 1 – Visão Geral

• Pode ser útil passar informações para um programa ao executá-lo;

• Argumentos de linha de comando;

• É a informação que segue o nome do programa na linha de comando do S.O;

• São os únicos argumentos que main() pode ter;

• argc  contém o número de argumentos na linha de comando e é um inteiro. No mínimo 1 
nome programa;

• argv  é um ponteiro para uma matriz de ponteiros para caracteres. Cada elemento nessa matriz
aponta para um argumento da linha de comando.

Prof. Edson Pedro Ferlin

Programação em C

14 Funções

Argumentos argc e argv
Parte 2 – Exemplo

main (int argc, char *argv[])

{

If (argc != 2)

{

printf (“Voce nao digitou o nome \n”);

exit (0);

}

printf (“Alo %s”, argv[1]);

}

No S.O:

C:\> nome Teste

Alo Teste

C:\>

Prof. Edson Pedro Ferlin

8

Prof. Edson Pedro Ferlin

Programação em C

15 Funções

Argumentos argc e argv
Parte 3 – Limites

• O separador de argumentos é um <espaço> ou um TAB;

• A maneira mais comum de declarar argv é: char *argv[], em que os colchetes ([]) vazios
indicam que argv é uma matriz de comprimento indeterminado;

• O número de argumentos é limitado pelo S.O., no caso do MS-DOS 128 caracteres por
linha.

Prof. Edson Pedro Ferlin

Programação em C

16 Funções

Funções Retornam Valores
Retornam valores não inteiros

• O tipo de uma função, por default, é int;

• Para tipo de dado diferente:

• dar um especificador de tipo;

• identificar antes de chamá-la;

float sum(float, float); /* identifica a funcao */

main ()

{

float prim, segun;

prim = 123.13;

segun = 99.09;

printf (“%f”,sum (prim, segun));

}

float sum (float a, float b)

{

return (a+b);

}

Prof. Edson Pedro Ferlin

9

Prof. Edson Pedro Ferlin

Programação em C

17 Funções

Funções Retornam Valores
Funções do tipo void

• Funções que não devolvem valores;

• Uso do tipo void.

void imp_vertical(char *); /* identifica a funcao */

main ()

{

imp_vertical (“Alo minha gente”);

}

void imp_vertical(char *str)

{

while (*str) printf(“%c \n”, *str++);

}

Prof. Edson Pedro Ferlin

Programação em C

18 Funções

Funções Retornam Valores
Protótipos de Funções

• Declarar o número e os tipos dos
argumentos da função;

• Permite que o compilador emita erros
se uma função com argumentos for
chamada com parâmetros com tipos
diferentes.

float func (int, float); /* prototipo */

main ()

{

int x=10;

float y=1.5;

func(x,y);

}

float func (int a, float b)

{

printf(“%f”, b/(float)a);

}

Prof. Edson Pedro Ferlin

10

Prof. Edson Pedro Ferlin

Programação em C

19 Funções

Funções Retornam Valores
Recursão

• As funções podem chamar a si próprias;

• Uma função é recursiva se um comando no
corpo da função chamar a si mesmo.

• O computador aloca memória na pilha e
executa o código da função com essas
novas variáveis.

long factorial (int);

main()

{

int n;

printf("Digite o numero: ");

scanf("%d", &n);

printf("\nO fatorial de %d eh %ld", n, factorial(n));

}

long factorial (int n)

{

long resp;

If (n==1) return (1);

resp = factorial (n-1)*n;

return (resp);

}

Prof. Edson Pedro Ferlin

Programação em C

20 Funções

ContatoContato

eferlin@live.com

(BLOG) professorferlin.blogspot.com

(SITE) professorferlin.webnode.com.br

(YOUTUBE) ProfEdsonPedroFerlin

